China wholesaler Herringbone Spur Gear, Bevel Gear and Helical Gear for Light Truck top gear

Product Description

1) According to the different strength and performance, we choose the steel with strong compression;
2) Using Germany professional software and our professional engineers to design products with more reasonable size and better performance; 3) We can customize our products according to the needs of our customers,Therefore, the optimal performance of the gear can be exerted under different working conditions;
4) Quality assurance in every step to ensure product quality is controllable.

Product Paramenters

    DRIVEN GEAR

NUMBER OF TEETH

8

MODULE

  7.56

LENTH

  225

OUTER DIAMETER

ø87.95

DIRECTION OF SPIRAL

L

ACCURACY OF SPLINE

  M24*2-6g

NUMBER OF SPLINE

18

 DRIVEN GEAR

NUMBER OF TEETH

39

OUTER DIAMETER

ø292

DIAMETER OF INNER HOLE

ø2 square meter, with building area of 72,000 square meters. More than 500 employees work in our company.
 We own more than 560 high-precise machining equipments, 10 Klingelnberg Oerlikon gear production lines, 36 Gleason gear production lines, 5 forging production lines 2 german Aichilin and 5 CHINAMFG CHINAMFG advanced automatic continuous heat treatment production lines. With the introducing the advanced Oerlikon C50 and P65 measuring center, we enhence our technology level and improve our product quality a lot. We offer better quality  and good after-sale service with low price, which insure the good reputation. With the concept of “for the people, by technology, creativity, for the society, transfering friendship, honest”, we are trying to provice the world-top level product.
Our aim is: CHINAMFG Gear,world class, Drive the world.
According to the different strength and performance, we choose the steel with strong compression;Using Germany professional software and our professional engineers to design products with more reasonable size and better performance;We can customize our products according to the needs of our customers,Therefore, the optimal performance of the gear can be exerted under different working conditions;Quality assurance in every step to ensure product quality is controllable.
Our company had full quality management system and had been certified by ISO9001:2000, QS-9000:1998, ISO/TS16949 , which insure the entrance of international market.

Certification & honors

Packaging & Shipping

Packaging Detail:standard package(carton ,wooden pallet).
Shipping:Support Sea freight. Accept FOB,EXW,FAS,DES. 

 

Cooperative customers

HangZhou CHINAMFG Gear Co., Ltd. adheres to the concept of “people-oriented, prosper with science and technology; create high-quality products, contribute to the society; turn friendship, and contribute sincerely”, and will strive to create world automotive axle spiral bevel gear products.


1.Do you provide samples?
Yes,we can offer free sample but not pay the cost of freight.
2.What about OEM?
Yes,we can do OEM according to your requirements.
3.How about after-sales service?
We have excellent after-sales service if you have any quanlity problem,you can contact us anytime.
4.What about package?
Stardard package or customized package as requirements.
5.How to ensure the quanlity of the products?
We can provide raw meterial report,metallographic examination and the accuracy testing etc.
6.How long is your delivery time?
Genarally it is 4-7 days.If customized it will be take 20 days according to your quantity. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Manufacturing Method: Cast Gear
Toothed Portion Shape: Herringbone Gear
Material: Cast Steel
Samples:
US$ 28/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

herringbone gear

How do you choose the right size herringbone gear for your application?

Choosing the right size herringbone gear for your application involves considering several factors and performing engineering calculations. Here’s a detailed explanation of the steps involved in selecting the appropriate size herringbone gear:

  1. Determine the Application Requirements: Start by understanding the specific requirements of your application. Consider factors such as the input and output speeds, torque loads, power requirements, duty cycle, and operating conditions. Determine the desired service life, efficiency, and reliability expectations for the gear system.
  2. Calculate the Gear Ratios: Determine the required gear ratios based on the speed and torque requirements of your application. Gear ratios define the relationship between the rotational speeds and torques of the input and output shafts. Select appropriate gear ratios that fulfill the desired performance objectives.
  3. Calculate the Load and Torque: Estimate the maximum load and torque that the herringbone gear will experience during operation. Consider both static and dynamic loads, shock loads, and any potential overload conditions. Calculate the required torque capacity of the gear system based on these load considerations.
  4. Consider the Size and Space Constraints: Evaluate the available space and size constraints in your application. Measure the available distance for gear installation, including the gear’s diameter, width, and axial length. Consider any restrictions on the gear’s physical dimensions and ensure that the selected gear size fits within the available space.
  5. Determine the Gear Module: The gear module is a parameter that defines the size and number of gear teeth. Calculate the gear module based on the desired gear ratios, torque capacity, and available space. The gear module is typically determined by considering a balance between gear tooth strength, contact ratio, and manufacturing feasibility.
  6. Perform Gear Design Calculations: Utilize standard gear design formulas and calculations to determine the required number of gear teeth, pitch diameter, helix angles, and other gear dimensions. Consider factors such as gear tooth strength, contact ratio, tooth profile optimization, and gear manufacturing standards. These calculations ensure that the selected gear size can handle the anticipated loads and provide reliable performance.
  7. Consult Manufacturers and Standards: Consult gear manufacturers, industry standards, and guidelines to ensure compliance with best practices and safety requirements. Manufacturers can provide technical expertise, recommend suitable gear sizes, and offer guidance on material selection, heat treatment processes, and gear quality standards.
  8. Consider Cost and Availability: Evaluate the cost implications and availability of the selected gear size. Consider factors such as material costs, manufacturing complexity, lead times, and the overall economic feasibility of the gear system. Balance the desired performance with cost considerations to arrive at an optimal gear size.

It’s important to note that selecting the right size herringbone gear requires expertise in gear design and engineering. If you lack the necessary knowledge, it is advisable to consult with experienced gear engineers or manufacturers who can assist in the selection process.

In summary, choosing the right size herringbone gear involves determining the application requirements, calculating gear ratios and torque loads, considering size constraints, determining the gear module, performing gear design calculations, consulting manufacturers and standards, and considering cost and availability. Following these steps ensures that the selected herringbone gear size meets the specific needs of your application and provides reliable and efficient operation.

herringbone gear

What lubrication is required for herringbone gears?

Proper lubrication is essential for the smooth and efficient operation of herringbone gears. The lubricant used in herringbone gear systems plays a crucial role in reducing friction, minimizing wear, dissipating heat, and protecting the gear surfaces. Here’s a detailed explanation of the lubrication requirements for herringbone gears:

  • Lubricant Selection: When selecting a lubricant for herringbone gears, it is important to consider factors such as load, speed, operating temperature, and environmental conditions. The lubricant should have suitable viscosity and additives to provide adequate film thickness and maintain lubrication under the anticipated operating conditions. Commonly used lubricants for herringbone gears include mineral oils, synthetic oils, and specialty lubricants formulated for gear applications.
  • Viscosity: The viscosity of the lubricant is crucial for ensuring proper lubrication and film formation between the gear teeth. The lubricant should have sufficient viscosity to create an effective lubricating film that separates the gear surfaces and reduces friction. It should be able to maintain this film under the operating conditions, ensuring smooth gear engagement and minimizing wear. The appropriate viscosity grade is typically specified by the gear system manufacturer based on the gear design, load, and speed.
  • Lubricant Application: The lubricant should be applied to the gear system in the appropriate manner to ensure uniform coverage and distribution. In most cases, herringbone gears are lubricated by immersion or splash lubrication, where the gears partially or fully submerge in the lubricant or have the lubricant splashed onto their surfaces. The lubricant should be directed towards the gear meshing area to ensure proper lubrication of the gear teeth and contact surfaces.
  • Lubricant Maintenance: Regular lubricant maintenance is essential to ensure the continued performance and longevity of herringbone gears. This includes monitoring the lubricant condition, checking for contamination, and replenishing or replacing the lubricant as necessary. Over time, the lubricant may degrade, become contaminated with particles or moisture, or lose its effectiveness. Regular inspections and lubricant analysis can help identify any issues and determine the appropriate maintenance intervals for lubricant replacement or replenishment.
  • Sealing and Contamination Prevention: Proper sealing of the gear housing or enclosure is important to prevent the ingress of contaminants, such as dust, dirt, or moisture, into the gear system. Contaminants can degrade the lubricant and lead to increased wear and damage to the gear surfaces. Seals, gaskets, or other appropriate sealing mechanisms should be employed to minimize the risk of contamination and maintain the integrity of the lubricant.

It is important to consult the gear system manufacturer’s recommendations and specifications regarding lubrication requirements. The manufacturer may provide specific guidelines regarding lubricant type, viscosity, application methods, and maintenance procedures based on the gear design and intended operating conditions. Adhering to these guidelines will help ensure optimal lubrication and maximize the performance and service life of herringbone gears.

herringbone gear

How do herringbone gears differ from other types of gears?

Herringbone gears, also known as double helical gears, possess distinct characteristics that set them apart from other types of gears. Here’s a detailed explanation of how herringbone gears differ from other gears:

1. Tooth Design: Herringbone gears have a unique V-shaped or herringbone-shaped tooth profile. This design is formed by two helical gear sections that are mirror images of each other. In contrast, other gears, such as spur gears, helical gears, bevel gears, or worm gears, have different tooth profiles and configurations.

2. Axial Thrust Elimination: One of the key differentiating factors of herringbone gears is their ability to eliminate or greatly reduce axial thrust forces. In helical gears, the helix angle of the teeth generates an axial force during rotation, requiring the use of thrust bearings to counteract the thrust loads. Herringbone gears, with their double helix design, have opposing helix angles that cancel out the axial forces, eliminating the need for thrust bearings.

3. Noisy Cancellation: Herringbone gears are known for their noise-canceling properties. The opposing helix angles of the two gear sections help reduce vibrations and noise during operation. This is particularly beneficial in applications where noise reduction is critical, such as printing presses or precision machinery.

4. Increased Load Capacity: The V-shaped tooth profile of herringbone gears provides increased tooth contact area compared to other gears with straight or helical teeth. This increased contact area improves load distribution and allows herringbone gears to handle higher torque loads, resulting in an increased load-carrying capacity.

5. Bidirectional Power Transmission: Herringbone gears are designed to transmit power bidirectionally. The symmetrical tooth profiles of herringbone gears enable power transmission in both directions, making them suitable for applications where reversing or bidirectional power transfer is required.

6. Smooth Operation: Due to their double helix design, herringbone gears provide smooth and gradual tooth engagement. This gradual meshing reduces sliding friction, minimizes backlash, and ensures a continuous transfer of power. This characteristic makes herringbone gears desirable in applications where smooth operation and high efficiency are crucial.

7. Complex Manufacturing: Herringbone gears have a more complex manufacturing process compared to some other gear types. The creation of the herringbone tooth profile requires specific machining techniques and precision to ensure proper meshing and alignment of the gear sections.

It’s important to note that the selection of gear type depends on the specific requirements of the application. While herringbone gears offer unique advantages, other gear types may be more suitable in certain scenarios based on factors such as space limitations, cost, torque requirements, and operating conditions.

In summary, herringbone gears stand out with their distinctive tooth design, axial thrust elimination, noise-canceling properties, increased load capacity, bidirectional power transmission, smooth operation, and complex manufacturing process, making them well-suited for various industrial applications.

China wholesaler Herringbone Spur Gear, Bevel Gear and Helical Gear for Light Truck top gearChina wholesaler Herringbone Spur Gear, Bevel Gear and Helical Gear for Light Truck top gear
editor by CX 2024-04-12

Tags:

Herringbone Gears

As one of the leading herringbone gears manufacturers, suppliers, and exporters of mechanical products, We offer herringbone gears and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of herringbone gears.

Recent Posts