China high quality Yogie China Suppliers Large Module Carbon Steel Herringbone Helical Gear spiral bevel gear

Product Description

Key attributes

Other attributes

Applicable Industries

Manufacturing Plant, Construction works , Energy & Mining

 

Weight (KG)

3000

 

Showroom Location

None

 

Video outgoing-inspection

Provided

 

Machinery Test Report

Provided

 

Marketing Type

Ordinary Product

 

Warranty of core components

Not Available

 

Core Components

Gear, Ring Gear

 

Place of CHINAMFG

ZheJiang , China

 

Condition

New

 

Warranty

1year

 

Shape

Ring Gear

 

Standard or Nonstandard

Nonstandard

 

Tooth Profile

Helical Gear,spur gear

 

Material

Steel

 

Processing

Forging

 

Pressure Angle

custom

 

Brand Name

TS

 

Product Name

Large Ring Gear

 

Module No.

5-180

 

Process

Milling,hobbing

 

Surface treatment

as request

 

Heat treatment

Q&T

 

Application

Industry machinery,transmission equipment

 

Standard

DIN ANSI ISO

 

Certificate

ISO

 

OEM Service

YES

 

Delivery time

15-60days

 

Packaging and delivery

Packaging Details

Package adapting to CHINAMFG transport

 

Port

ZheJiang ,HangZhou

 

Supply Ability

Supply Ability

5 Piece/Pieces per Month

 

 

OUR WORKSHOPS

 

OUR EQUIPMENTS
Technology Process

Material

Carbon steel,Alloy steel

Structure

Forging,casting

Type of gear

spur gear,helical gear,Planetary Gear

Heat treatment

Quenching and tempering

Process 

forging, rough machining, QT, finish machining

Main equipments

hobbing,CNC machine

Module

up to 200

Precision of gear

Grinding ISO Grade 5-7 & Hobbing ISO Grade 8-9

Inspection

Raw material inspection, UT,physical property test,dimension inspect

Application

Mining machinery, mill, kiln and other equipment

OUR CERTIFICATE
OUR CUSTOMER FEEDBACK
CONTACT 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industry
Hardness: Hb190-Hb300
Gear Position: External Gear
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

herringbone gear

What is the purpose of using herringbone gears in machinery?

Using herringbone gears in machinery serves various purposes and offers several advantages. Here’s a detailed explanation of the purposes and benefits of using herringbone gears:

  • Smooth and Quiet Operation: Herringbone gears are known for their ability to provide smooth and quiet operation. The double helical tooth design cancels out axial and radial forces, minimizing gear vibrations and reducing noise levels during engagement. This makes herringbone gears suitable for applications where noise reduction and smooth operation are essential, such as precision machinery, automotive transmissions, and gearboxes in industrial equipment.
  • High Load Capacity: Herringbone gears have a high load-carrying capacity due to their double helical tooth profile. The opposing helix angles of the gear teeth distribute the load evenly, allowing for efficient power transmission even under heavy loads. This makes herringbone gears suitable for applications that involve high torque requirements and heavy-duty machinery, such as mining equipment, construction machinery, and marine propulsion systems.
  • Bidirectional Power Transmission: Herringbone gears can transmit power in both directions without the need for additional thrust bearings or special mechanisms. The double helical tooth profile cancels out axial thrust forces, eliminating the net axial thrust on the gear shaft. This bidirectional power transmission capability makes herringbone gears suitable for applications where reversible power transfer is required, such as marine propulsion systems, locomotives, and machine tools.
  • High-Speed Applications: Herringbone gears are well-suited for high-speed applications due to their enhanced tooth strength and efficient torque transfer. The double helical tooth design provides increased tooth contact area and improved load distribution, allowing for reliable power transmission at high rotational speeds. This makes herringbone gears suitable for applications such as turbo machinery, power generation equipment, and high-speed gearboxes.
  • Reduced Wear and Improved Durability: The double helical tooth profile of herringbone gears helps to minimize wear and improve gear durability. The opposing helix angles distribute the load evenly across the gear teeth, reducing localized stress concentrations and minimizing the risk of tooth failure. This ensures long service life and reliable operation, making herringbone gears suitable for applications where durability and longevity are critical, such as heavy machinery, industrial equipment, and wind turbine systems.
  • Efficient Power Transmission: Herringbone gears offer efficient power transmission due to their large contact area and overlapping tooth engagement. The double helical tooth profile provides a larger contact ratio compared to spur gears, allowing for a greater number of teeth in contact at any given time. This efficient torque transfer minimizes power losses and improves overall gear system efficiency, making herringbone gears suitable for applications where energy efficiency is a priority, such as automotive transmissions, gearboxes, and power transmission systems.

The purpose of using herringbone gears in machinery is to achieve smooth and quiet operation, handle high loads, enable bidirectional power transmission, accommodate high-speed applications, ensure durability and longevity, and achieve efficient power transmission. These advantages make herringbone gears a preferred choice in various industries and applications where reliable and high-performance gearing solutions are required.

herringbone gear

How does a herringbone gear impact the overall efficiency of a system?

Herringbone gears can have a significant impact on the overall efficiency of a mechanical system. Their unique design and characteristics contribute to improved efficiency in several ways. Here’s a detailed explanation of how herringbone gears can influence the efficiency of a system:

  • Reduced Friction: Herringbone gears are designed to minimize friction between the gear teeth during operation. The double helical arrangement of the teeth allows for opposing helix angles, which helps to cancel out the axial thrust generated by the gear meshing. This results in reduced sliding friction and less energy loss due to frictional forces, thereby improving overall efficiency.
  • Smooth Operation: The herringbone gear design enables smooth and precise gear engagement. The opposing helix angles of the teeth facilitate the gradual meshing and unmeshing of the gears, reducing impact and shock loads. The smooth operation minimizes vibrations and noise levels, eliminating energy losses associated with excessive vibrations and improving the overall efficiency of the system.
  • Higher Torque Capacity: Herringbone gears have a larger surface area of contact between the gear teeth compared to conventional spur gears. This increased contact area allows for higher torque transmission capabilities. By efficiently transmitting higher torque loads, herringbone gears help reduce the need for additional gear stages or larger gear sizes, resulting in a more compact and efficient system.
  • Better Load Distribution: The double helical arrangement of the teeth in herringbone gears helps distribute the load more evenly across the gear face. This improved load distribution minimizes localized stress concentrations and wear on the gear teeth, leading to enhanced durability and reduced energy losses due to gear wear and failure.
  • Efficient Power Transmission: Herringbone gears facilitate efficient power transmission by ensuring a high degree of gear meshing contact and proper alignment. The precise gear engagement reduces backlash and ensures optimal power transfer between the gears, resulting in higher transmission efficiency and minimal power losses within the system.
  • Reduced Heat Generation: Herringbone gears’ smooth operation and reduced friction contribute to lower heat generation during gear meshing. The reduced heat generation helps to minimize thermal losses within the system. Additionally, the improved load distribution and larger contact area of herringbone gears help dissipate heat more effectively, further enhancing the overall efficiency of the system.

It’s important to note that the overall efficiency of a system is influenced by various factors, including gear design, lubrication, alignment, and the specific application and operating conditions. While herringbone gears offer several advantages that contribute to improved efficiency, it’s crucial to consider the entire system design and optimize other components and parameters accordingly to achieve the highest overall efficiency.

herringbone gear

Are there different variations of herringbone gears available?

Yes, there are different variations of herringbone gears available to suit specific application requirements. Here’s a detailed explanation of some of the common variations of herringbone gears:

  • Single- and Double-Sided: Herringbone gears can be classified as single-sided or double-sided based on the number of helical sections. Single-sided herringbone gears have a herringbone tooth profile on one side and a straight tooth profile on the other side. Double-sided herringbone gears have herringbone tooth profiles on both sides. Single-sided herringbone gears are commonly used when axial thrust elimination is not a primary requirement, while double-sided herringbone gears provide superior axial thrust cancellation.
  • Conventional and Low-Backlash: Herringbone gears can also be categorized as conventional or low-backlash based on their tooth design and manufacturing precision. Conventional herringbone gears have standard tooth profiles and may exhibit some level of backlash, which is the slight clearance between the mating teeth. Low-backlash herringbone gears are designed and manufactured with tighter tolerances to minimize or eliminate backlash, resulting in improved precision and reduced vibration.
  • Materials and Coatings: Herringbone gears can be made from various materials depending on the application requirements. Common materials include steel, cast iron, bronze, and non-ferrous alloys. Additionally, surface coatings such as nitriding or carburizing can be applied to enhance the gear’s hardness, wear resistance, and durability. The choice of material and coating depends on factors like load capacity, operating conditions, and cost considerations.
  • Customized Geometries: Herringbone gears can be customized to specific geometries and specifications based on the application requirements. This includes variations in tooth dimensions, helix angles, pressure angles, and gear module (the ratio of the gear’s pitch diameter to the number of teeth). Customized geometries allow herringbone gears to be optimized for specific torque loads, speed ranges, and space constraints.
  • Integrated Components: In some applications, herringbone gears may be integrated with other components to form specialized gear systems. For example, herringbone gears can be combined with planetary gear systems to create herringbone planetary gears, which offer high torque capacity and compact design. These integrated variations provide specific advantages in terms of load distribution, torque transmission, and overall system efficiency.

The choice of herringbone gear variation depends on the specific application requirements, including factors such as torque loads, speed ranges, axial thrust considerations, precision requirements, and space limitations. Manufacturers and engineers can select the most appropriate variation or customize herringbone gears to ensure optimal performance and reliability in their respective applications.

In summary, herringbone gears offer different variations such as single-sided and double-sided configurations, conventional and low-backlash designs, variations in materials and coatings, customized geometries, and integration with other gear systems. These variations allow herringbone gears to be tailored to meet the specific needs of diverse industrial applications.

China high quality Yogie China Suppliers Large Module Carbon Steel Herringbone Helical Gear spiral bevel gearChina high quality Yogie China Suppliers Large Module Carbon Steel Herringbone Helical Gear spiral bevel gear
editor by CX 2024-04-03

Tags:

Herringbone Gears

As one of the leading herringbone gears manufacturers, suppliers, and exporters of mechanical products, We offer herringbone gears and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of herringbone gears.

Recent Posts